Welcome to Prism!

Upload scholarly work, create communities, get citable links and more. To get the most out of Prism, log in with your NetID and check out our guide.

Published May 2021 | Version v1.0.0
Journal Article Open

SARS-CoV-2 Surveillance System in Canada: Longitudinal Trend Analysis

Abstract

Background: The COVID-19 global pandemic has disrupted structures and communities across the globe. Numerous regions of the world have had varying responses in their attempts to contain the spread of the virus. Factors such as public health policies, governance, and sociopolitical climate have led to differential levels of success at controlling the spread of SARS-CoV-2. Ultimately, a more advanced surveillance metric for COVID-19 transmission is necessary to help government systems and national leaders understand which responses have been effective and gauge where outbreaks occur. Objective: The goal of this study is to provide advanced COVID-19 surveillance metrics for Canada at the country, province, and territory level that account for shifts in the pandemic including speed, acceleration, jerk, and persistence. Enhanced surveillance identifies risks for explosive growth and regions that have controlled outbreaks successfully. Methods: Using a longitudinal trend analysis study design, we extracted 62 days of COVID-19 data from Canadian public health registries for 13 provinces and territories. We used an empirical difference equation to measure the daily number of cases in Canada as a function of the prior number of cases, the level of testing, and weekly shift variables based on a dynamic panel model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. Results: We compare the week of February 7-13, 2021, with the week of February 14-20, 2021. Canada, as a whole, had a decrease in speed from 8.4 daily new cases per 100,000 population to 7.5 daily new cases per 100,000 population. The persistence of new cases during the week of February 14-20 reported 7.5 cases that are a result of COVID-19 transmissions 7 days earlier. The two most populous provinces of Ontario and Quebec both experienced decreases in speed from 7.9 and 11.5 daily new cases per 100,000 population for the week of February 7-13 to speeds of 6.9 and 9.3 for the week of February 14-20, respectively. Nunavut experienced a significant increase in speed during this time, from 3.3 daily new cases per 100,000 population to 10.9 daily new cases per 100,000 population. Conclusions: Canada excelled at COVID-19 control early on in the pandemic, especially during the first COVID-19 shutdown. The second wave at the end of 2020 resulted in a resurgence of the outbreak, which has since been controlled. Enhanced surveillance identifies outbreaks and where there is the potential for explosive growth, which informs proactive health policy.

Other

original_citation: Post L, Boctor MJ, Issa TZ, Moss CB, Murphy RL, Achenbach CJ, Ison MG, Resnick D, Singh L, White J, Welch SB, Oehmke JF. SARS-CoV-2 Surveillance System in Canada: Longitudinal Trend Analysis. Jmir Public Health and Surveillance. 2021;7(5):11.

Files

SARS-CoV-2 surveillance.pdf
Files (638.7 kB)
Name Size Download all
md5:3d7487d1caf993204bf311c3089882a5
638.7 kB Preview Download

Additional details

Created:
March 30, 2023
Modified:
April 27, 2023