Skip to Content

Coronavirus information for Feinberg.

Download the full-sized PDF of Dynamic Panel Data Modeling and Surveillance of COVID-19 in Metropolitan Areas in the United States: Longitudinal Trend Analysis
Download the file

Actions

Download Analytics Citations

Export to: EndNote

Collections

This file is in the following collections:

COVID-19 Community

Dynamic Panel Data Modeling and Surveillance of COVID-19 in Metropolitan Areas in the United States: Longitudinal Trend Analysis Open Access (recommended)

Descriptions

Resource type(s)
Article
Keyword
COVID-19
SARS-CoV-2
SARS-CoV-2 surveillance
second wave
wave two
wave 2
global COVID-19 surveillance
COVID-19 metropolitan areas
COVID-19 cities
US public health surveillance
US COVID-19
US surveillance metrics
dynamic panel data
generalized method of the moments
US econometrics
US SARS-CoV-2
US COVID-19 surveillance system
US COVID-19 transmission speed
US COVID-19 transmission acceleration
COVID-19 transmission deceleration
COVID-19 transmission jerk
COVID-19 7-day lag
Arellano-Bond estimator
generalized method of moments
GMM
New York City
Los Angeles
Chicago
Dallas
Houston
Washington DC
Miami
Philadelphia
Atlanta
Phoenix
Boston
San Francisco
Riverside
Detroit
Seattle
Minneapolis
San Diego
Tampa
Denver
St Louis
Baltimore
Charlotte
Orlando
San Antonio
Portland
Rights
Attribution 4.0 International

Creator
Oehmke, Theresa B.
Post, Lori Ann
Moss, Charles B.
Issa, Tariq Ziad
Boctor, Michael Jacob
Welch, Sarah B.
Oehmke, James Francis
Abstract
Background: The COVID-19 pandemic has had profound and differential impacts on metropolitan areas across the United States and around the world. Within the United States, metropolitan areas that were hit earliest with the pandemic and reacted with scientifically based health policy were able to contain the virus by late spring. For other areas that kept businesses open, the first wave in the United States hit in mid-summer. As the weather turns colder, universities resume classes, and people tire of lockdowns, a second wave is ascending in both metropolitan and rural areas. It becomes more obvious that additional SARS-CoV-2 surveillance is needed at the local level to track recent shifts in the pandemic, rates of increase, and persistence. Objective: The goal of this study is to provide advanced surveillance metrics for COVID-19 transmission that account for speed, acceleration, jerk and persistence, and weekly shifts, to better understand and manage risk in metropolitan areas. Existing surveillance measures coupled with our dynamic metrics of transmission will inform health policy to control the COVID-19 pandemic until, and after, an effective vaccine is developed. Here, we provide values for novel indicators to measure COVID-19 transmission at the metropolitan area level. Methods: Using a longitudinal trend analysis study design, we extracted 260 days of COVID-19 data from public health registries. We used an empirical difference equation to measure the daily number of cases in the 25 largest US metropolitan areas as a function of the prior number of cases and weekly shift variables based on a dynamic panel data model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. Results: Minneapolis and Chicago have the greatest average number of daily new positive results per standardized 100,000 population (which we refer to as speed). Extreme behavior in Minneapolis showed an increase in speed from 17 to 30 (67%) in 1 week. The jerk and acceleration calculated for these areas also showed extreme behavior. The dynamic panel data model shows that Minneapolis, Chicago, and Detroit have the largest persistence effects, meaning that new cases pertaining to a specific week are statistically attributable to new cases from the prior week. Conclusions: Three of the metropolitan areas with historically early and harsh winters have the highest persistence effects out of the top 25 most populous metropolitan areas in the United States at the beginning of their cold weather season. With these persistence effects, and with indoor activities becoming more popular as the weather gets colder, stringent COVID-19 regulations will be more important than ever to flatten the second wave of the pandemic. As colder weather grips more of the nation, southern metropolitan areas may also see large spikes in the number of cases.
Original Bibliographic Citation
Oehmke TB, Post LA, Moss CB, Issa TZ, Boctor MJ, Welch SB, Oehmke JF. Dynamic Panel Data Modeling and Surveillance of COVID-19 in Metropolitan Areas in the United States: Longitudinal Trend Analysis. Journal of Medical Internet Research. 2021;23(2):12.
Related URL
Publisher
JMIR PUBLICATIONS, INC
Date Created
2021-02-09
Original Identifier
(PMID) 33481757
Language
English
Subject: MESH
COVID-19
Public Health Surveillance
Models, Econometric
Disease Transmission, Infectious
Subject: Geographic Name
United States
DOI
10.2196/26081

File Details

File Properties
Mime type: application/pdf
File size: 478.7 kB