42% of left-handed children with immune disorders had dyslexia (P < .01); and 32% of dyslexic children with immune disorders were left-handed (P < .05). Of the three factors, handedness was the most important association. (Tonnessen FE et al. Dyslexia, left-handedness, and immune disorders. Arch Neurol April 1993; 50: 411-416). (Reprints: Dr Tonnessen, Center for Reading Research, Box 2504, Ullandhaug, N-4004 Stavanger, Norway).

COMMENT. The Geschwind theory postulates a single factor underlying dyslexia, left-handedness, and immune disorders. The results of this study suggest that left-handedness and dyslexia are more important than immune disorders in a possible three-way association of these conditions.

DYSLEXIA: A VISUAL DISORDER?

Visual evoked potentials were measured with scalp electrodes in eight reading-disabled children aged 8 to 11 years and compared to a control group of 13 age-matched normal readers at the School of Optometry, University of Missouri, St Louis. Using a steady background and a low-spatial-frequency target (0.5 cycle/degree visual angle), the latencies of the early components (N1 and P1) of the VER were longer and the amplitude of the subsequent (P1-N2) component was smaller in the reading-disabled than in normal readers. A flickering background increased the latency and reduced the amplitude of the early components of the VER in normal readers, whereas in reading-disabled children only the amplitude was affected. These differences were most likely due to a sensory deficit and slowed response in the magnicellular visual pathway of reading-disabled children. (Lehmkuhle S et al. A defective visual pathway in children with reading disability. N Engl J Med April 8 1993; 328: 989-996). (Reprints: Stephen Lehmkuhle PhD, School of Optometry, University of Missouri-St Louis, 8001 Natural Bridge Rd, St Louis, MO 63121).

COMMENT. These findings are supported by previous anatomical and electrophysiological studies that have demonstrated a defective magnicellular visual pathway in dyslexic subjects. A cause-and-effect relation between these slowed visual responses and the reading disability remains to be determined.

TOXIC DISORDERS

COGNITIVE IMPROVEMENT FOLLOWING LEAD CHELATION

The short (7 weeks) and long (6 months) term effects of lowered blood lead levels on cognitive performance were measured in 154 previously untreated lead-poisoned children, aged 13 to 87 months, examined at the Department of Pediatrics, Albert Einstein College of Medicine, Montefiore