Fear in the Delivery Room: A Predictive Model of How Medical Liability, Midwifery Care, and Reproductive Education Affect Cesarean Section Rates in the United States

Elizabeth Walsh

Thesis Project
Submitted in partial fulfillment of the
Requirements for the degree of

MASTER OF SCIENCE IN PREDICTIVE ANALYTICS

December 2016

Candice Bradley, Ph.D., First Reader
Roy Sanford, Ph.D., Second Reader
Fear in the Delivery Room: How Medical Liability, Midwifery Care, and Reproductive Education Affect Cesarean-Section Rates in the United States

© 2016 Copyright by Elizabeth Walsh

All Rights Reserved
ABSTRACT

Fear in the Delivery Room: How Medical Liability, Midwifery Care, and Reproductive Education Affect Cesarean-Section Rates in the United States, a Predictive Model

Elizabeth Walsh

The United States has one of the highest cesarean section delivery rates in the world, yet distribution of cesarean section rates for U.S. counties vary drastically. This research presents a model which identifies counties with a cesarean section delivery rate level for first-born singleton births of greater than 30%. The research presents the role of fear as a determinant for cesarean delivery rates. The proposed model includes three main drivers of cesarean section deliveries: fear of litigation, maternal fear of childbirth, and broader structural forces. Birth data from 2012 are analyzed, along with county demographics data, medical liability premiums, midwifery care, and reproductive education for 511 counties within the United States. Logistic univariate analysis identified high maternal age, low gestational age, high rate of diabetes, high medical liability premiums, lack of reproductive education, lack of support for midwifery care, census region, rural/urban classification, and high levels of income inequality as significantly associated with high cesarean section rates, for first-birth singleton deliveries at the county level. Data was split into training/sample and test/out-of-sample sets and multivariable logistic regression analysis was used to develop a predictive model on the sample set to accurately identify counties with a high cesarean section rate in the test/out-of-sample data set. The model accurately predicted 72% of records. The results suggest that fear of litigation on behalf of the provider and a maternal fear of childbirth influence the rate of cesarean section deliveries at the county level.
Acknowledgements

First, thank you to my first reader, Prof. Candice Bradley, for the early words of encouragement and support and patience throughout this process.

Thank you to my second reader, Prof. Roy Sanford, for the detailed comments, thought provoking questions, and guidance on statistical modeling. I am extremely grateful to you for steering me in the right direction and helping bring clarity to the overall project.

Thank you to Prof. Terry Christenson for guidance with overall writing style and providing the road map that allowed me to build a stronger narrative around the data and research.

I would also like to thank the experts who were involved in accessing and sourcing the data needed for this project: Mike Matray, editor at Medical Liability Monitor for providing access to medical liability premiums; Elizabeth C. Wilson at the Centers for Disease Control for timely response to my inquiries; and to Christine Thain and the midwives and doulas at Eastside Birth Center for the early conversations and guidance.

To Olivia, for completely changing my life and bringing my awareness to this issue. And finally, my profound gratitude to my partner, James, for the continuous support, encouragement, and patience. I could not have accomplished this without you.
Table of Contents

ABSTRACT... 3

Acknowledgements ... 4

Table of Contents ... 5

List of Figures and Tables... 6

Chapter One: Introduction and Guiding Research Question ... 8

 Introduction.. 8

 Guiding Research Question ... 9

 Significance ... 9

 Hypothetical Model .. 10

Chapter Two: Literature Review .. 12

 Trends in Cesarean-Section Rates in the United States ... 12

 Maternal and Infant Risk Factors .. 16

 Medical Liability and Fear of Litigation ... 17

 Midwifery, Reproductive Education, and Fear of Childbirth .. 18

 Broader Structural Forces ... 24

 Summary .. 25

Chapter Three: Data Collection and Research Methods ... 27

 Data Collection .. 27

 Variables for model consideration. ... 29

 Research Methods .. 33

Chapter Four: Results ... 36
List of Figures and Tables

Figure 1 - Hypothetical Model .. 11
Figure 2 - Cesarean Rates by Country ... 12
Figure 3 - Trial of Labor for U.S. Cesarean Deliveries in 2012 ... 13
Figure 4 - Trial-of-Labor for U.S. Cesarean Deliveries by gestational age, 2012 14
Figure 5 – Primary singleton cesarean deliveries by state, 2012 .. 15
Figure 6 - Histogram: County distribution by rate of cesarean ... 15
Figure 7 - Cesarean Delivery Rate California Counties ... 16
Figure 8 - Hypothetical Model and Variables .. 26
Figure 9 - Histogram - Distribution of records by region ... 33
Figure 10 - Distribution of sample and test subsets by region ... 34

Table 1: 2012 U.S. Births by Delivery Method - Singleton First Live Births 8
Table 2: 2012 U.S. Births by Attendant, Location, and Medical Intervention 21
Table 3: Variable List - Maternal and Infant Risk Factors ... 29
Table 4: Variable List – Medical Liability Rates ... 30
Table 5: Variable List – Reproductive Education .. 30
Table 6: Variable List – Midwifery Care ... 30
Table 7: Variable List – Broader Structural Forces ... 31
Table 8- Summary Statistics for Continuous Data .. 34
Table 9: Univariate Results – Maternal and Infant Risk Factors .. 36
Table 10: Univariate Results – Medical Liability ... 36
Table 11: Univariate Results – Reproductive Education ... 37
Table 12: Univariate Results – Midwifery Care .. 38
Table 13: Univariate Results – Broader Structural Forces ... 38
Table 14: Results: Multivariable Logistic Model ... 39
Table 15 : Multivariable Model Confusion Matrix - in Sample .. 40
Table 16 : Multivariable Model Confusion Matrix – out of Sample .. 40
Table 17 : Multivariable Model Confusion Matrix – Full Data Set ... 40
Chapter One: Introduction and Guiding Research Question

Introduction

In the United States, one-third of births occur by cesarean section, representing one of the highest rates among developed nations. Why is it so high, and why do some counties have higher rates of cesarean section deliveries while others have lower rates?

The Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS), provides access to data related to births in the United States through the natality public-use data on the CDC Wonder Online Database (Division of Vital Statistics, 2012). In 2012, there were 3.5 million births, and of these, over 1.5 million births were identified as first born, singleton births. Since the likelihood of cesarean delivery increased with multiparity (Fuglenes, Aas, Botten, Øian, & Kristiansen, 2011) and multiple gestation (Ginsberg & Levine, 2003), this research focuses on primary, first-born, singleton births. In 2012, the cesarean delivery rate for primary singleton births was 30.8% (see Table 1).

Table 1: 2012 U.S. Births by Delivery Method - Singleton First Live Births

<table>
<thead>
<tr>
<th>Delivery Method</th>
<th>2012 Count</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaginal</td>
<td>1,062,261</td>
<td>69.1%</td>
</tr>
<tr>
<td>Cesarean</td>
<td>473,086</td>
<td>30.8%</td>
</tr>
<tr>
<td>Not Stated</td>
<td>1838</td>
<td>0.1%</td>
</tr>
<tr>
<td>Total</td>
<td>1,537,185</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: CDC/NCHS, National Vital Statistics System

The rise in cesarean-section deliveries has not reduced the rate of infant or maternal mortality, and the rate of morbid complications during childbirth has increased in connection with rising cesarean deliveries (Silver, 2012). Research has followed to determine risk factors associated with cesarean deliveries at the individual level. These risk factors include maternal
demographics of height, weight, and gestational age (Chen, Uryasev, & Young, 2004), maternal diabetes (Rosenberg, Garbers, Lipkind, & Chiasson, 2005), and existing health conditions and maternal comorbidities (Huesch, Currid-Halkett, & Doctor, 2014). Most research in the area has been focused on analyzing risk factors at the individual level. There is little research addressed at community level cesarean-section rates. To fill this gap in literature, this research seeks to understand county-level determinants of cesarean-section rates. This research project uses a variety of data sets to build a model that predicts which counties in the United States had high rates of cesarean-section deliveries in 2012.

Guiding Research Question

Why are cesarean section deliveries higher in some counties than in others? Recent research from Sweden (Nilsson, Lundgren, Karlström, & Hildinsson, 2012) and the United States (Arcia, 2013) identified a fear of childbirth (FOC) as a factor that increases the likelihood of cesarean-section delivery in low-risk pregnancies. Chen et al. (2004) identified maternal and infant health characteristics as predictors for cesarean births. Miller and Shriver (2012) identified structural economic forces as contributing to cesarean deliveries. Can we build a model that takes these aspects into consideration to determine which counties in the United States are at greater risk for high cesarean delivery births?

Significance

Cesarean-section births carry risks, including infection, hemorrhaging, injury to organs, extended hospital stays, and extended recovery time (American Pregnancy Association, 2008). Mothers who have a cesarean delivery are more likely to have post-delivery health problems such as severe bleeding, infection, pain, longer recovery, and difficulty breastfeeding (American College of Nurse-Midwives, 2012). Cesarean deliveries are intended to save the health of the
mother or baby, but the rate of morbid complication during childbirth has increased because of the rising rate of cesareans in the United States (Silver, 2012).

Globally, these risks are known within the medical and midwifery professions but may not be known to women preparing to give birth. An Australian study found that most women who elect a cesarean-section were unaware that the procedure could cause complications for the baby and the mother after birth (Chen & Hancock, 2012) or that the health complications of the child can continue through childhood. The Norwegian Mother and Child Cohort Study, which examined the associations between delivery by cesarean-section and development of respiratory illness, found increased risk of asthma at 36 months of age for children who were delivered by cesarean section (Magnus et al., 2011). These odds are greater for children delivered at 37–38 gestational weeks than later (Nir, Nadir, & Feldman, 2012).

The high rate of cesarean section deliveries has economic implications as well as health consequences. Payments for care are nearly 50% greater for women who have cesarean deliveries (Garvey, 2013). Assuming an average differential of $20,000 between a vaginal and a cesarean delivery (The Lamp, 2013), moving the U.S. average from 32.8% to 30% could represent an annual savings of over $2 billion dollars.

Hypothetical Model

This study aims to create a model that will predict the severity of cesarean-section deliveries at the county level using attributes that have previously been associated with cesarean-section rates, while introducing variables that contribute to fear associated with childbirth. The hypothetical model presented here demonstrates a pathway to cesarean section deliveries which includes three main aspects. The first aspect is *Fear of Litigation*, fueled by high rates of maternal and infant risk factors along with rates of medical liability premiums. The second aspect, *Fear of
Childbirth, includes reproductive education and support for midwifery care as influencing maternal fear of childbirth. A third aspect, Broader Structural Forces, is considered and includes elements that are external to the decision-making process of the mother or the medical provider, such as access to care and socio-economic status (see Figure 1).

Figure 1 - Hypothetical Model

The goal of this research is to provide a model which will give health care providers, educators, and community organizations insights to shape community-wide initiatives and strategies for improving the childbirth experience for low-risk women, with the goal of reducing unnecessary cesarean-section deliveries.
Chapter Two: Literature Review

Trends in Cesarean-Section Rates in the United States

In 2012, more than 3.9 million births occurred in the United States, with almost 1.3 million delivered via cesarean section. The United States had one of the highest rates of cesarean deliveries among developed nations, with a rate of 32.8% compared to an average of 26.9% for member countries of the Organization for Economic Co-operation and Development (OECD; see Figure 2).

Figure 2 - Cesarean Rates by Country

Cesarean-section is a delivery method intended to address emergency health problems for the mother or the baby. A planned cesarean delivery is one that is scheduled in advance of the due date due to risk factors of the mother or infant. Planned cesarean births may also be a result of maternal request. However, recent research demonstrated that approximately 90% of women prefer to deliver vaginally in the absence of maternal or infant risk (Yee et al., 2015). The rate of
planned cesarean sections, rather than emergency cesarean sections, is not available. Reviewing the rate of cesarean without trial of labor provides an approximation of the rate of planned cesarean births.

Trial of Labor

Trial of labor occurs when labor is allowed, augmented, or induced with plans for vaginal delivery (Centers for Disease Control and Prevention [CDC], 2012). Trial of labor data are available on the aggregate level for the United States. Most of the cesarean-section deliveries in the United States occur without attempting labor. In the United States, trial of labor occurred in less than one-third of the cesarean deliveries (23%) in 2012 (see Figure 3).

Figure 3 - Trial of Labor for U.S. Cesarean Deliveries in 2012

![Trial of Labor for U.S. Cesarean Deliveries in 2012](source: CDC/NCHS, National Vital Statistics System)

The most common reason for a cesarean following trial of labor was that labor was not progressing as fast as expected (American College of Nurse-Midwives, 2012). The American Colleges of Obstetrics and Gynecologists encourage health care providers to wait until at least 39 weeks of gestation before performing elective cesarean deliveries (Oshiro et al., 2013). However,
per data from the CDC/NCHS, National Vital Statistics System, cesarean-section delivery rates without trial of labor are noticeably higher for births occurring before 39 weeks than births occurring at week 40 and later. Normal pregnancy length has been conventionally defined as delivery between 37 weeks and 42 weeks (Spong, 2013). Week 36 is the last week before a pregnancy is considered full-term. The rate of cesarean delivery for 36 weeks of gestation is 40% and has the highest rate of cesarean deliveries without trial of labor (see Figure 4).

Figure 4 - Trial-of-Labor for U.S. Cesarean Deliveries by gestational age, 2012

Dispersion of County Cesarean Rates

Rates for cesarean-section deliveries vary widely across the United States. In 2012, the state with the lowest cesarean-section rate for primary singleton births was Utah at 21% compared to the highest, Louisiana, at 37% (see Figure 5).
County data are available for counties with a population of at least 100,000 (CDC, 2012). The average cesarean section rate varies across the United States, with the greatest frequency between 30% and 32.5% (see Figure 6).

Figure 5 – Primary singleton cesarean deliveries by state, 2012

Figure 6 - Histogram: County distribution by rate of cesarean

Histogram – Distribution of counties by average cesarean section rates 2012 primary singleton births
Within a state, the range of cesarean delivery rates by county can vary drastically. For example, California has a state cesarean delivery rate of 30% for primary singleton births, and cesarean rates across counties range from as low as 21% in Yolo County to as high as 36% in Kings County (see Figure 7).

Figure 7 - Cesarean Delivery Rate California Counties

2012 Cesarean delivery rates for California Counties

Maternal and Infant Risk Factors

Chen, Uryasev, & Young (2004) presented a predictive model for identifying cephalopelvic disproportion/failure to progress and cesarean delivery in a middle-class practice in a low-risk primipara population. The model identified maternal height, age, weight, and gestational age as predictors for a cesarean delivery, with a higher probability of cesarean delivery
for shorter, older, more obese women. Diabetes has been shown to increase the risk of cesarean delivery (Ehrenberg, Durnwald, Catalano, & Mercer, 2004).

Medical Liability and Fear of Litigation

Rising medical liability premiums have been shown to affect medical professionals’ decision making. Between 2001 and 2005, the median liability premiums in the United States increased from $40,093 to $74,447, and this increase had a negative impact on selection rates of obstetrics-gynecology as a career choice by U.S. medical graduates (Nuthalapaty, Shirazi, Paden, & Higdon, 2014). Many medical students found that they were unprepared for the litigious environment of medicine and indicated that they did not receive formal education in liability/malpractice issues during residency; they identified liability-related issues as influencing decision-making in their residency practice (Blanchard et al., 2012). Providers, therefore, find themselves practicing “defensive medicine.” Studdert et al. (2005) defined “defensive medicine” as “a deviation from sound medical practice that is induced primarily by threat of liability.” Actions associated with defensive medicine include excessive diagnostic procedures and tests as well as avoidance of procedures that are perceived to increase the risk of litigation. In their research, Studdert et al. found that defensive medicine was strongly correlated with the perceived burden of insurance premiums. Murthy, Grobman, Lee, and Holl (2007) found that higher rates of primary cesarean delivery were associated with increased medical professional liability premiums for OB-GYNs in the state of Illinois.

Physicians operating in an environment of high medical premiums rates may be “primed” by fears of litigation. According to Minkoff (2012), there are nine common causes of medical malpractice suits, six of which may involve a potential allegation to perform a cesarean section in a timely manner. “Therefore, it is not surprising, that in the minds of many obstetricians, the
performance of a cesarean section when there is any doubt about the baby’s health, or even before there is any doubt, will have a salutary effect on their chance of being successfully sued” (Minkoff, 2012, p. 392). The analysis for this project examines the impact of medical liability premiums on mode of delivery.

Midwifery, Reproductive Education, and Fear of Childbirth

Expectant mothers tend to experience more supportive care under a midwife. Focusing on the psychological well-being of the expectant mother can help prepare the woman for the childbirth experience. Women under midwife-led care have reported fewer instances of severe fear of childbirth than women who receive obstetric care (Hall et al., 2009), and a preference for cesarean-section has been shown to be greater among women who are more fearful of delivery (Arcia, 2013). Tully and Ball (2013) suggested that the current perception of childbirth as “unpredictable, frightening and/or potentially dangerous” (Tully & Ball, 2013, p.109) is what leads to high rates of obstetric intervention.

Very little research has been conducted in the United States regarding the influence of fear of childbirth on delivery outcomes. The most comprehensive research on the subject comes from the Nordic countries, where researchers are attempting to understand the effect of fear of childbirth on delivery outcomes while exploring various treatment options (Salmela-Aro et al., 2014). A Norwegian study of 2,206 women who planned a vaginal delivery found that labor lasted longer in women with a fear of childbirth than in women without a fear of childbirth (Adams, Eberhard-Gran, & Eskild, 2012).

Recent research in Australia explored the concept of fear of childbirth. One such study found that the expectant mothers’ fear of childbirth was associated with nulliparity (first birth) and multiparity where the previous birth was operative (Toohill, Fenwick, Gamble, & Creedy, 2014).
A longitudinal study of a region of Sweden and a region of Australia found that pregnant women who were considered “fearful” of birth were over three times more likely to prefer a caesarean than women who were not identified as “fearful” (Haines, Rubertsson, Pallant, & Hildingsson, 2012). Another study on fear of childbirth found that concerns about control and safety and a “devaluing of the female body and birth process” were the main reasons women requested cesarean section during a healthy and normal first pregnancy (Fenwick et al., 2008).

Education and intervention have been shown to mitigate fear of childbirth in expectant mothers. In a randomized trial in Finland, women identified as having severe fear of childbirth were provided either psycho-educative group therapy or conventional treatment for the remainder of their pregnancy. The group receiving intervention therapy had far fewer cesarean-sections than the conventional group and reported having a very positive delivery experience (Rouhe et al., 2013). In a Finish study of nulliparous women with a severe fear of childbirth, individualized treatment for fear of childbirth was shown to drastically reduce elective cesarean-section procedures (Sydsjö et al., 2014).

Since education and intervention have been shown to minimize fear of childbirth, this study will explore midwifery care and reproductive education as mitigating factors on fear of childbirth.

Fear of Childbirth and the Midwifery Model of Care

In the United States, the support for midwifery practice is minimal in comparison to the support for obstetric care. Per analysis conducted by Truven Health Analytics for the New York Times, the key reason for the high costs of births in the United States is due in part to the predominance of obstetricians over midwives (The Lamp, 2013). Comparison of midwife-led units with obstetric-led units shows that the obstetric-led units have a greater likelihood of operative delivery for self-rated “no-” and “low-” risk pregnancies (Symon, Paul, Butchart, Carr,
& Dugard, 2007). Women who experienced continuity of care by a primary midwife have been shown to have lower rates of operative birth (Mclachlan et al., 2012).

In the Netherlands, where low-risk pregnancies receive midwife-led care (Geert et al., 2014), the cesarean-section rate is 15.6% (OECD, 2013), less than half the rate in the United States. The correlation between midwife care and low cesarean rates is apparent in other countries as well. Where there is state support for midwifery practice and midwifery education, the rate of cesarean sections is at a rate that is closer to the World Health Organization’s (WHO) ideal rate of 10%-15% (Soltani & Sandall, 2012).

The difference in outcomes between obstetric-led and midwife-led care expands beyond the labor and delivery room. There are distinguishable differences between the two modes of care throughout the pregnancy. The midwifery model of care provides comprehensive prenatal care, education, and supports the psychological and social well-being of the mother during the entire childbearing cycle (Midwives Alliance of North America [MANA], 2012). Midwife-led education and psychological intervention have been shown to reduce fear of childbirth among expectant mothers (Fenwick, Staff, Gamble, Creedy, & Bayes, 2008) and this may be the reason why cesarean section births are lower in midwife-led units.

Under the midwifery model of care, perspectives on the role of the attending medical provider during the childbirth process differ from the obstetric model. The major differences lie in the involvement of interventions during labor, and in the goals and objectives of care (Rooks, 1999). In the midwifery model, birth is treated as a natural process in which the woman is empowered to experience birth with minimum intervention (Sandall, Soltani, Gates, Shennan, & Devane, 2013). The midwifery model of care views labor pain as a normal and manageable part of the birthing process, while the biomedical model view is that pain must be controlled with
anesthesia or analgesia (Gibson, 2014). This concept appears to be supported by the 2012 birth data in the United States, which show that births attended by a midwife have a lower rate of augmentation, anesthesia, or induction of labor than births attended by a doctor of medicine or a doctor of osteopathy (see Table 2).

Table 2: 2012 U.S. Births by Attendant, Location, and Medical Intervention

<table>
<thead>
<tr>
<th>Attendant at Birth</th>
<th>In Hospital</th>
<th>Not in Hospital</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medicine (MD) & DO</td>
<td>Y: 80.41%</td>
<td>N: 19.59%</td>
<td>Y: 80.37%</td>
</tr>
<tr>
<td>Midwife (CNM) & Osteopathy</td>
<td>Y: 69.78%</td>
<td>N: 30.22%</td>
<td>Y: 61.93%</td>
</tr>
</tbody>
</table>

Data Source: CDC/NCHS, National Vital Statistics System

Under the midwifery model of care, the pregnant mother has an active role in the baby’s delivery; and is encouraged to take a greater position of control. The safe delivery of the child and the support of the woman through the pregnancy process are primary objectives under midwifery care (Rooks, 1999). As such, women who are more likely to prefer the midwifery model of care are those who view their own active participation as essential to the childbirth process (Arcia, 2013).

In the continuity of care under a midwife, the mother receives all care from a midwife practice throughout the pregnancy, during labor, and after birth. In contrast, continuous support during labor in hospital settings has become an exception, and the likelihood for operative birth has increased (Hodnett, Gates, Hofmeyr, & Salaka, 2005). For a hospital birth a mother may find that she must schedule the birth date if they want to deliver with their chosen provider.
MANA emphasizes a model of care that monitors the psychological and social well-being of the mother while providing individualized education (MANA, 2012). These measures may be responsible, in part, for a reduced cesarean-section rate among midwife-led births. Expectant mothers who prepare for out-of-hospital births tend to have fewer operative outcomes. Garvey (2013) found that the risk of cesarean delivery was significantly lower for women who initiated birth at a birth center, even for those who are transferred to a hospital. In a Netherlands study of midwife-led births, women who planned and completed a home birth reported a greater sense of control and less fear of giving birth than women who planned and completed a hospital birth (Geert et al., 2014). Low-risk women who plan home births experience high rates of physiologic birth, low rates of intervention, and no increase in adverse outcomes (Cheyney et al., 2014).

It appears that midwifery care is associated with a higher level of supportive care for the mother, but simply having a midwife assigned to the birth does not account for the difference in birth outcome. It is the care during the entire pregnancy process that prepares the woman for birth. This type of care was the subject of a multi-center trial in Germany, where an intervention of midwife-led care was introduced. The study found that women who did not receive supportive procedures from midwives (including dedicated attention by the midwife, continuity of care, and hands-on techniques for improving maternal comfort) were significantly more likely to have a cesarean or operative delivery (Knape, Mayer, Schnepp, & Sayn-Wittgenstein, 2014).

Fear of Childbirth and Reproductive Education

Psychological well-being and feelings of preparedness of the expectant mother has benefits that extend beyond the birth. Nulliparous women who feel prepared for childbirth were predicted to have positive experiences of motherhood after the birth (Salmela-Aro et al., 2014).
The World Health Organization has established a link between maternal education and maternal mortality (Karlsen et al., 2011). The question remains as to whether the level of the mother’s reproductive education has an impact on birth outcomes. In one Latin American study on health education intervention during pregnancy, women who received intervention education showed significant improvement in knowledge of labor-onset signals and alarm signs (Belizán et al., 1995). Maternal understanding of the signs of onset of labor can ensure that the mother goes to the hospital during active labor, rather than pre-active or false labor. When women are admitted during active labor rather than pre-active labor, the likelihood of having a cesarean birth is reduced (Neal et al., 2014).

The degree to which a community is comfortable with discussing pregnancy and reproductive health may have an impact on the level of fear about childbirth and subsequently affect cesarean-section rates for the community. In developing countries, women who exchange reproductive health information with friends and family are less likely to undergo a cesarean section birth (Leone, Padmadas, & Matthews, 2008).

The level of comfort and social acceptance in discussing reproductive health varies across communities in the United States. Fear of childbirth among female college students has been associated with a lack of knowledge about childbirth (Cleeton, 2001). And contrary to popular belief, high school students lack the understanding of the specifics of how contraceptives work to prevent pregnancy (Smith, Realini, Buzi, & Martinez, 2011). Students appreciate facilitators of sex education who allow open dialog (Smith et al., 2011). However, in communities where parents and school officials favor an “abstinence-only” curriculum, teachers have expressed fear that discussing controversial sex education topics, including contraception, could jeopardize their careers (Donvan, 1998). The fear of communication on part of the school officials may lead to
fewer open and honest conversations about reproductive health, thereby reducing the transfer of knowledge on reproductive issues such as childbirth.

Broader Structural Forces

Miller and Shriver (2012, p. 709) found that women’s birth preferences are ultimately shaped “by broader structural forces, particularly economic position and availability of birth options.”

As Medicaid has become the nation’s largest payer of maternity-related services, paying for approximately 44% of births in the United States in 2012 (CDC, 2012), many women may feel that their childbirth options are limited. The certified nurse-midwife Medicaid reimbursement rates, relative to physician reimbursement rates, vary by state (American College of Nurse-Midwives, 2013). In many cases, women who prefer a home birth with a midwife find themselves unable to afford it, and therefore feel economically coerced into a birth practice they find risky and objectionable because their insurance or Medicaid only covers hospital birth with a physician (Miller & Shriver, 2012).

The odds of operative births are greater when the birth is in a hospital, since hospitals deliver both high- and low-risk births. But after adjusting for socio-demographic and clinical factors, hospital practices and culture are shown to affect cesarean delivery rates (Caceres et al., 2013). Lauer, Betrán, Merialdi, and Wojdyla (2010) found that in developed nations, health system factors have stronger aggregate-level effects on cesarean-section rates than income do (based on GDP per capita). In their report for the World Health Organization, the researchers demonstrate a “supply-driven” model, where the number of obstetricians in the health system (“suppliers” of cesarean delivery) has a substantial influence on rising cesarean-section rates in developed nations (Lauer et al., 2010). They also suggest that cesarean delivery rates may be responsive to health system
changes. Health system factors are important aggregate-level determinants of cesarean-section rates for developed countries. The number of obstetricians in the health system has a substantial influence on the cesarean-section rates for developed nations (Lauer et al., 2010). This research examines societal forces of income inequality, community health, and rural classification of each county as a means of explaining larger social structural forces within the county.

Summary

This study explores the impact of fear of childbirth and fear of litigation on cesarean-section rates at the county level within the United States. Research studies conducted outside of the United States have identified a relationship between fear of childbirth and mode of delivery (Haines et al., 2012). Maternal fear of childbirth has been associated with lack of knowledge (Cleton, 2001). Since the midwife model of care includes maternal education about the birth process, this research uses existing data on reproductive education policies in public schools, along with the prevalence of midwife care as mitigating factors for maternal fear of childbirth.

The analysis considers three main aspects contributing to county level cesarean section rates (see Figure 8). The first aspect, *Fear of Litigation* explores the role of maternal and infant risk factors along with medical liability rates. The second aspect, *Fear of Childbirth* considers the reproductive education and the prevalence of midwifery care as mitigating factors on reducing fear of childbirth. The third aspect, *Broader Structural Forces*, considers access to medical care, socioeconomic demographics and the urban/rural ranking of the county. The proposed hypothetical model and variables are outlined below in Figure 8.
Figure 8 - Hypothetical Model and Variables

Hypothetical Model — County Level Risk for Cesarean Section Births

- **Maternal and Infant Risk Factors**
 - Maternal Age
 - Maternal Weight
 - Maternal Diabetes
 - Gestational Age

- **High medical liability rates**
 - Liability Premiums for OB/GYN

- **Maternal lack of understanding about the birthing process**
 - Reproductive Education

- **Lack of support for midwifery model of care**
 - Rate of Births Attended by Midwife
 - Midwifery legal status

Fear of Litigation

Fear of Childbirth

High Rate of Cesarean Deliveries

Broader Structural Forces
- Prevalence of Obstetricians
- County socioeconomic data
- Availability of resources
Chapter Three: Data Collection and Research Methods

Data Collection

Since 1985, the WHO has considered the ideal rate for cesarean sections to be between 10% and 15% (WHO, HRP). The aim of this project is to create a predictive model that will identify counties within the United States with a cesarean delivery rate above 30% (twice the WHO recommended level) for first born singleton births.

Based on information obtained during the review of existing literature, this research sought data related to medical liability premiums, prevalence of midwifery and obstetric care, reproductive education, and demographic characteristics for births, by county, within the United States for the year 2012. This research included data from multiple sources. Not all sources are updated annually. For example, United States Census data were available for 2010, and the most recent data file from the Department of Agriculture was from 2013. Therefore, 2012 was determined to be the best year for representative data sets. The final model includes data from the CDC, the United States Census Bureau, MANA, the American College of Nurse-Midwives (ACNM), reproductive health education data from the Guttmacher Institute, and medical liability insurance premium data from Medical Liability Monitor (MLM). Census data are available for counties with at least 10,000 births in the given year. For this research, 511 counties within the United States were included. Below is additional information on specific data sources considered for the final model.

Birth Data from the Centers for Disease Control and Prevention. The National Vital Statistics System (NVSS) is the system by which the NCHS collects and publicly disseminates national vital statistics. State laws require that birth certificates are completed for all births. Aggregated county-level data were retrieved via the NVSS for 2012 births. Data from the CDC NVSS include the
total number of cesarean-section deliveries by county, birth order, maternal age, percent of births by gestational age segments, and percent of births attended by attending medical specialist.

Demographic data from the United States Census Bureau. The United States Census Bureau provides information on population, housing, economic, and geographic information for communities within the United States. Information was obtained through the United States Census American FactFinder (U.S. Department of Commerce, 2010).

Rural-Urban Continuum Codes from the United States Department of Agriculture Economic Research Service. Rural-Urban Continuum Codes distinguish metropolitan counties by the population size of their metro area and nonmetropolitan counties by the degree of urbanization and adjacency to metro areas (USDA Economic Research Service, 2013). Codes are available for 2003 and 2013. For this research, 2013 classification was used.

Medical liability insurance premium data from Medical Liability Monitor. MLM collects and publishes news about medical malpractice (MLM, 2012). The MLM’s Annual Rate Survey provides information on nationwide trends in physician malpractice costs along with state-by-state and county-level professional liability rates for major malpractice carriers. Rates are available for internal medicine and OB/GYN specialties.

Reproductive education data from the Guttmacher Institute. The Guttmacher Institute is a nonprofit organization dedicated to research and public education to advance sexual and reproductive health. Data on reproductive education in public school were collected from the “State Policies in Brief – Sex and HIV Education” (Guttmacher Institute, 2012).

Midwifery data from the American College of Nurse-Midwives and the Midwives Alliance of North America. ACNM is a professional association dedicated to advancing midwifery care in
the United States (ACNM, 2013). The ACNM reviews research and publishes information studies on the support for midwifery care across the United States. ACNM published information on the amount of fee-for-service reimbursement for certified midwives and nurse-midwives under state Medicaid programs relative to physician reimbursement rates (2013). This research identified states where the reimbursement rates for midwives were 100% or 90%-99% relative to physician reimbursement rates. Information on midwifery laws for each state was obtained through the Midwives Alliance of North America (MANA, 2012). For this analysis, counties are identified as having midwifery licensing if located within a state that regulates and provides licensure for midwifery care.

Demographic data from the U.S. Department of Health and Human Services. The U.S. Department of Health and Human Services makes available Area Health Resource Files (AHRF) data downloads from data provided by the Bureau of Health Professionals (U.S. Department of Health & Human Services, 2014). The data files contain information on the number of health professionals, health facilities, utilization rates, expenditures, population estimates, and environment information for states and counties within the United States.

Variables for model consideration.

Once all variables were obtained, they were grouped per facets outlined in the hypothetical model. Maternal and infant health risks include maternal age, infant gestation, and percent of county female population identified as diabetic (see Table 3).

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Variable Description</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF: Maternal Age 40plus</td>
<td>Percent of births to mothers aged 40 or more</td>
<td>CDC NVSS</td>
</tr>
</tbody>
</table>
Medical liability rates were grouped together. Premium rates for internal medicine and OB/GYN specialties were considered (see Table 4).

Table 4: Variable List – Medical Liability Rates

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Variable Description</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML: Internal</td>
<td>Medical Liability Premiums for Internal Practice</td>
<td>Medical Liability Monitor</td>
</tr>
<tr>
<td>ML: OB GYN</td>
<td>Medical Liability Premiums for OB/GYN Practice</td>
<td>Medical Liability Monitor</td>
</tr>
</tbody>
</table>

Five variables from the Guttmacher Institute are included for variable consideration. These variables represent education at the junior high or high school level (see Table 5).

Table 5: Variable List – Reproductive Education

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Variable Description</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE: Medically Accurate</td>
<td>When provided, sex or HIV education must be medically accurate (y=1).</td>
<td>Guttmacher Institute</td>
</tr>
<tr>
<td>RE: Sex in marriage</td>
<td>When provided, sex education must include information on the importance of sex only within marriage.</td>
<td>Guttmacher Institute</td>
</tr>
<tr>
<td>RE: Life Skills Healthy Decision Making</td>
<td>When provided, sex education must include life skills for healthy decision-making.</td>
<td>Guttmacher Institute</td>
</tr>
<tr>
<td>RE: Contraceptive Education</td>
<td>State has policy for providing contraceptive education to public high school students as part of health education courses.</td>
<td>Guttmacher Institute</td>
</tr>
<tr>
<td>RE: Communication</td>
<td>When provided, sex education must include life skills for family communication.</td>
<td>Guttmacher Institute</td>
</tr>
</tbody>
</table>

Variables related to support for midwifery care are obtained from MANA along with birth data from the CDC (see Table 6). Percent of births attended by a midwife was calculated by dividing the number of births attended by a midwife or certified nurse midwife by the number of records where the attending provider was recorded for first-born singleton births.

Table 6: Variable List – Midwifery Care

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Variable Description</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW: Medicaid 100</td>
<td>Medicaid covers midwifery care at a rate equal to physicians.</td>
<td>American College of Nurse Midwives</td>
</tr>
</tbody>
</table>
Broader structural forces include the prevalence of obstetricians within the county, socio-economic indicators, income inequality, and census region (see Table 7). Census region was included for consideration to account for regional differences in attitudes toward cesarean section births. To bifurcate the data, the Midwest and West were combined as having the lowest rates, leaving the South and Northeast in the remaining category.

Table 7: Variable List – Broader Structural Forces

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Variable Description</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF: Deep Poverty</td>
<td>Percent of county living in deep poverty</td>
<td>DHHS Area Health Resource Files</td>
</tr>
<tr>
<td>SF: Poverty</td>
<td>Percent of population that lives in poverty</td>
<td>DHHS Area Health Resource Files</td>
</tr>
<tr>
<td>SF: OB per 100 births</td>
<td>Calculated number of registered obstetricians per 100 births</td>
<td>DHHS Area Health Resource Files</td>
</tr>
<tr>
<td>SF: Region MW</td>
<td>County is within the Midwest Census Region</td>
<td>DHHS Area Health Resource Files</td>
</tr>
<tr>
<td>SF: Region NE</td>
<td>County is within Northeast Census Region</td>
<td>DHHS Area Health Resource Files</td>
</tr>
<tr>
<td>SF: Region S</td>
<td>County is within the South Census Region</td>
<td>DHHS Area Health Resource Files</td>
</tr>
<tr>
<td>SF: Region W</td>
<td>County is within the West Census Region</td>
<td>DHHS Area Health Resource Files</td>
</tr>
<tr>
<td>SF: Region W or MW</td>
<td>County is within the West or Midwest Census Region</td>
<td>DHHS Area Health Resource Files</td>
</tr>
<tr>
<td>SF: Female No Insurance</td>
<td>Percent of adult female population without insurance</td>
<td>Census Fact Finder</td>
</tr>
<tr>
<td>SF: Female Pop</td>
<td>County population of adult females</td>
<td>Census Fact Finder</td>
</tr>
<tr>
<td>SF: GINI</td>
<td>GINI estimate for county.</td>
<td>Census Fact Finder</td>
</tr>
<tr>
<td>SF: Health Disability</td>
<td>Percent of adults with a disability</td>
<td>Census Fact Finder</td>
</tr>
<tr>
<td>SF: Per Capita Income</td>
<td>County income per capita in 2012.</td>
<td>Census Fact Finder</td>
</tr>
<tr>
<td>SF: Urban Rural 1</td>
<td>County is in a metro area with a population of 1 million or more</td>
<td>ERS 2013</td>
</tr>
<tr>
<td>SF: Urban Rural 2</td>
<td>County is in metro area of a population of 250,000 to 1 million</td>
<td>ERS 2013</td>
</tr>
<tr>
<td>SF: Urban Rural 3</td>
<td>County is in a metro area with a population fewer than 250,000</td>
<td>ERS 2013</td>
</tr>
<tr>
<td>SF: Urban Rural 4</td>
<td>Urban population with a population of 20,000 or more, adjacent to a metro area</td>
<td>ERS 2013</td>
</tr>
<tr>
<td>SF: Urban Rural 5</td>
<td>Urban population with a population of 20,000 or more, not adjacent to a metro area</td>
<td>ERS 2013</td>
</tr>
</tbody>
</table>
Research Methods

The cesarean-section rate in the United States in 2012 was 32.8% for all births and 30.8% for primary singleton births. The goal of this research was to develop a predictive model to identify counties with a cesarean-section delivery rate above 30% for first born singleton births.

The final list of collected data included 511 counties. CDC county birth data is only available for counties with a population of at least 100,000 people. Birth data from the CDC contained information for 524 counties. Thirteen counties were omitted due to inability to match CDC data with ERS and/or DHHS sources. Each observation in the data set was randomly assigned to a training/sample or test/out-of-sample set. Three hundred thirty seven observations were included in the training/sample set, and 174 observations were included in the test/out-of-sample set. Exploratory data analysis uncovered a noticeable difference between regions (see Figure 9).

Figure 9 - Histogram - Distribution of records by region

To ensure that the test and sample sets were representative of the entire data set, the records were split based on region, then random sampling was applied within census region subsets (see Figure 10).
All continuous variables were discretized using the “smbinning” package in R (Jopia, 2016). Binned and discrete variables were evaluated using the odds ratio and Wald’s approach for p-value determination. See Table 8 for summary statistics of continuous variables in the model data before discretization.
Odds ratios were calculated for each discrete variable against the dependent variable of First Born Singleton Cesarean Rate > 30%. As recommended by Hosmer and Lemeshow (2000), any variable whose univariate test has a p-value of < 0.25 was a candidate for the multivariable model.

Variables were evaluated within their respective model group of Maternal and Infant Risk Factors, Medical Liability, Reproductive Education, Support for Midwifery Care, and Broader Structural Forces. Variables were then ranked based on performance within the respective category. Top-performing variables were included in final model consideration. The final multivariable logistic model was created using the “glm” function in the stats package in R. Final variable selection was based on Variation Inflation Factors (seeking VIF scores of less than 2 for all variables), a low Akaike information criterion (AIC) score, and out-of-sample model performance.
Chapter Four: Results

The tables below list the variables that were considered for the final model based on a univariate test with a p-value of <0.25.

Univariate Logistic Results and Variable Selection

Maternal and Infant Risk Factors. High maternal age, low gestational age, and high rates of female diabetes at the county level have higher odds of a county cesarean section rate of 30% or greater for first born singleton births (see Table 9).

Table 9: Univariate Results – Maternal and Infant Risk Factors

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Variable Description – Yes=1</th>
<th>n (of sample)</th>
<th>OR</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF: Maternal Age 40plus - high</td>
<td>Discretized - % of births to mothers age 40 and greater was higher than 1.1%</td>
<td>178</td>
<td>2.28</td>
<td>0.000</td>
</tr>
<tr>
<td>RF: Gestation Under 37wks</td>
<td>Discretized - % of births with gestational age of less than 37wks was greater than 10.1%</td>
<td>103</td>
<td>2.73</td>
<td>0.000</td>
</tr>
<tr>
<td>RF: Health Female Diabetic</td>
<td>Discretized - % of women in county that are diabetic was greater than 7.1%</td>
<td>264</td>
<td>2.77</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Medical Liability. High rates of medical liability premiums for internal and OB/GYN specialists at the county level have higher odds of a county cesarean section rate of 30% or greater for first born singleton births (see Table 10).

Table 10: Univariate Results – Medical Liability

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Variable Description – Yes=1</th>
<th>n (of sample)</th>
<th>OR</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML: Internal Rates- High</td>
<td>Discretized - Medical Liability Premiums for Internal Practice greater than $15,759</td>
<td>119</td>
<td>4.19</td>
<td>0.000</td>
</tr>
<tr>
<td>ML: OB GYN Rates High</td>
<td>Discretized – Medical Liability Premiums for OB/GYN practice was greater than $69,450</td>
<td>130</td>
<td>3.35</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Reproductive Education. Counties with reproductive education standards that include life skills for family communication, require that the education is medically accurate, and/or include skills for healthy decision making, are less likely to have a primary singleton cesarean delivery rate of greater than 30%. Counties with reproductive education focusing on abstinence have a greater likelihood of having a cesarean delivery rate greater than 30% for primary singleton births. Contraceptive education was not significant in the univariate analysis but was considered for the multivariable analysis (see Table 11).

Table 11: Univariate Results – Reproductive Education

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Variable Description – Yes=1</th>
<th>n (of sample)</th>
<th>OR</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE: family communication</td>
<td>When provided, sex education must include life skills for family communication.</td>
<td>91</td>
<td>0.275</td>
<td>0.000</td>
</tr>
<tr>
<td>RE: Abstinence</td>
<td>When provided, sex education must include information on the importance of sex only within marriage.</td>
<td>176</td>
<td>2.172</td>
<td>0.000</td>
</tr>
<tr>
<td>RE: Medically Accurate</td>
<td>When provided, sex or HIV education must be medically accurate (y=1).</td>
<td>113</td>
<td>0.42</td>
<td>0.003</td>
</tr>
<tr>
<td>RE: Life Skills Healthy Decision Making</td>
<td>When provided, sex education must include life skills for healthy decision-making.</td>
<td>152</td>
<td>0.498</td>
<td>0.002</td>
</tr>
<tr>
<td>RE: Contraceptive Education</td>
<td>State has policy for providing contraceptive education to public high school students as part of health education courses.</td>
<td>131</td>
<td>0.762</td>
<td>0.226</td>
</tr>
</tbody>
</table>

Midwifery Support. Counties where midwives attend more than 7.3% of births or where Medicaid reimbursement rate is at least 90% of physician reimbursements, are less likely to have a primary singleton cesarean delivery rate of greater than 30%. Where Medicaid coverage is not extended to midwives on par with physicians, the odds are greater that the county will have a primary singleton cesarean rate of 30% or greater (see Table 11).
Table 12: Univariate Results – Midwifery Care

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Variable Description – Yes=1</th>
<th>n (of sample)</th>
<th>OR</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW: Attending</td>
<td>Discretized - Percent of births attended by a midwife was greater than 7.1%</td>
<td>158</td>
<td>0.407</td>
<td>0.000</td>
</tr>
<tr>
<td>ME: Medicaid 90-100</td>
<td>The Medicaid reimbursement rate for midwives was 90% or greater.</td>
<td>239</td>
<td>0.341</td>
<td>0.000</td>
</tr>
<tr>
<td>MW: Medicaid 100</td>
<td>Medicaid covers midwifery at a rate equal to physicians.</td>
<td>176</td>
<td>0.464</td>
<td>0.001</td>
</tr>
<tr>
<td>MW: Medicaid 80-89%</td>
<td>The Medicaid reimbursement rate for midwives was between 80% and 89%.</td>
<td>68</td>
<td>2.236</td>
<td>0.005</td>
</tr>
<tr>
<td>MW: Medicaid 70-79%</td>
<td>The Medicaid reimbursement rate for midwives was between 70% and 79%.</td>
<td>30</td>
<td>3.307</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Broader Structural Forces. Counties located in the West or Midwest have greater odds of high cesarean rates than counties in the South or Northeast. Large metropolitan areas with a high population of adult women have higher odds of high cesarean rates than less populated metro areas. High degree of income inequality, as measured by the county’s GINI score, has higher odds of high cesarean rates than counties with lower inequality (see Table 13).

Table 13: Univariate Results – Broader Structural Forces

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Variable Description – Yes=1</th>
<th>n (of sample)</th>
<th>OR</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF: Region W or MW</td>
<td>County is within the West or Midwest Census Region</td>
<td>139</td>
<td>0.232</td>
<td>0.000</td>
</tr>
<tr>
<td>SF: Region W</td>
<td>County is within the West Census Region</td>
<td>60</td>
<td>0.193</td>
<td>0.000</td>
</tr>
<tr>
<td>SF: Region S</td>
<td>County is within the South Census Region</td>
<td>127</td>
<td>2.957</td>
<td>0.000</td>
</tr>
<tr>
<td>SF: Region MW</td>
<td>County is within the Midwest Census Region</td>
<td>79</td>
<td>0.503</td>
<td>0.009</td>
</tr>
<tr>
<td>SF: Region NE</td>
<td>County is within Northeast Census Region</td>
<td>71</td>
<td>1.784</td>
<td>0.350</td>
</tr>
<tr>
<td>SF: Urban Rural 1</td>
<td>County is in a metro area with a population of 1 million or more</td>
<td>145</td>
<td>2.473</td>
<td>0.000</td>
</tr>
<tr>
<td>SF: Urban Rural 2</td>
<td>County is in metro area of a population of 250,000 to 1 million</td>
<td>103</td>
<td>0.723</td>
<td>0.171</td>
</tr>
<tr>
<td>SF: Urban Rural 3</td>
<td>County is in a metro area with a population fewer than 250,000</td>
<td>81</td>
<td>0.414</td>
<td>0.001</td>
</tr>
<tr>
<td>SF: Female Pop High</td>
<td>Discretized - County population of adult females greater than 115,785</td>
<td>149</td>
<td>2.21</td>
<td>0.000</td>
</tr>
<tr>
<td>SF: GINI - high</td>
<td>Discretized - GINI estimate for county greater than 0.4864</td>
<td>49</td>
<td>2.93</td>
<td>0.002</td>
</tr>
<tr>
<td>SF: Per Capita Income High</td>
<td>Discretized - County income per capita in 2012 greater than $40,894</td>
<td>168</td>
<td>1.48</td>
<td>0.072</td>
</tr>
<tr>
<td>SF: Poverty High</td>
<td>Discretized - Percent of population that lives in poverty greater than 6.1%</td>
<td>167</td>
<td>0.71</td>
<td>0.116</td>
</tr>
</tbody>
</table>
Multiple regression model. The final model identifies seven variables that accurately predicted 72% of out-of-sample observations. Results from the multiple logistic regression model are outlined in Table 14.

| Variable Name | Variable Description | estimate | SE | Pr(>|z|) | OR | 95% CI(OR) |
|------------------------------------|--|----------|-------|----------|--------|------------|
| (Intercept) | (Intercept) | 0.1061 | 0.4545| 0.81542 | 0.90 | 0.37 - 2.19|
| RF: Gestation Under 37wks | Discretized - % of births with gestational age of less than 37wks was greater than 10.0% | 0.9388 | 0.3174| 0.00310 | 2.56 | 1.38 - 4.82|
| RF: Maternal Age 40plus | Discretized - % of births to mothers age 40 and greater was higher than 1.1% | 0.8056 | 0.3005| 0.00734 **| 2.24 | 1.25 - 4.07|
| ML: Internal Rates- High | Discretized - Medical Liability Premiums for Internal Practice greater than $15,759 | 0.9339 | 0.2898| 0.00127 **| 2.54 | 1.45 - 4.52|
| MW: Attending | Discretized - Percent of births attended by a midwife was greater than 7.1% | 0.7707 | 0.2688| 0.00414 **| 0.46 | 0.27 - 0.78|
| ME: Medicaid 90-100 | The Medicaid reimbursement rate for midwives was 90% or greater. | 0.7833 | 0.3101| 0.01155 **| 0.46 | 0.25 - 0.84|
| RE: Abstinence | When provided, sex education must include information on the importance of sex only within marriage. | 0.6726 | 0.2912| 0.02092 * | 1.96 | 1.11 - 3.49|
| SF: Region W or MW | County is within the West or Midwest Census Region | 0.8536 | 0.2779| 0.00213 * | 0.43 | 0.25 - 0.73|
| SF: Urban Rural 1 | County is in a metro area with a population of 1 million or more | 0.609 | 0.312 | 0.05097 **| 1.84 | 1.00 - 3.41|
| SF: Urban Rural 3 | County is in a metro area with a population fewer than 250,000 | 0.5006 | 0.3527| 0.15586 . | 0.61 | 0.30 - 1.20|

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 466.51 on 336 degrees of freedom
Residual deviance: 351.39 on 327 degrees of freedom

AIC: 371.39
GLM, Family=binomial
n=337
in sample accuracy: 0.748
test accuracy: 0.724
final accuracy: 0.740
The confusion matrix shows the model’s slight tendency to identify counties as having a cesarean rate below 30% for singleton primary births. The confusion matrices in Table 15, Table 16, and Table 17 demonstrate that the model is more likely to classify counties as having a cesarean delivery rate of less than 30% for primary singleton births. Nonetheless, the model could identify counties with high cesarean rates, above 30%, for about 65% of the high cesarean rate counties.

Table 15: Multivariable Model Confusion Matrix - in Sample

<table>
<thead>
<tr>
<th>Confusion Matrix – Sample</th>
<th>Actual: No</th>
<th>Actual: Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=337</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predicted: No</td>
<td>136 (84%)</td>
<td>60</td>
</tr>
<tr>
<td>Predicted: Yes</td>
<td>25</td>
<td>116 (66%)</td>
</tr>
</tbody>
</table>

Table 16: Multivariable Model Confusion Matrix – out of Sample

<table>
<thead>
<tr>
<th>Confusion Matrix – Test</th>
<th>Actual: No</th>
<th>Actual: Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=174</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predicted: No</td>
<td>74 (80%)</td>
<td>30</td>
</tr>
<tr>
<td>Predicted: Yes</td>
<td>18</td>
<td>52 (63%)</td>
</tr>
</tbody>
</table>

Table 17: Multivariable Model Confusion Matrix – Full Data Set

<table>
<thead>
<tr>
<th>Confusion Matrix – Full Data Set</th>
<th>Actual: No</th>
<th>Actual: Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predicted: No</td>
<td>210 (83%)</td>
<td>90</td>
</tr>
<tr>
<td>Predicted: Yes</td>
<td>43</td>
<td>168 (65%)</td>
</tr>
</tbody>
</table>
Chapter Five: Conclusion and Discussion

Conclusion

This research presents a model for understanding the variation in cesarean section rates across the United States, for primary singleton births, at the county level. This study shows that medical liability premiums, reproductive education, midwifery care, along with socioeconomic and demographic factors, work in concert to influence the mode of delivery for nulliparous births in the United States. This research supports previous work identifying midwifery care and medical liability as influencers on cesarean section rates in the United States. The additional consideration of reproductive education, or lack thereof, along with a county level analysis, supports the hypothetical model that a maternal fear of childbirth combined with a fear of medical liability is contributing to high cesarean section rate for nulliparous births in the United States.

Since most low-risk mothers prefer to deliver vaginally, more research should be dedicated to understanding the gap between the desired and actual modes of delivery in the United States. Fear of litigation and fear of childbirth are subjects that require more research. Aggregate level data are not currently available for a woman’s intended mode of delivery, feelings about childbirth prior to labor, and the risk status of the infant or mother pre-labor. Having such data sets would allow for further research on the impact of fear on mode of delivery.

Discussion

The desire to mitigate risk at the individual level has resulted in a more medicalized system which presents macro-level evidence of has increased risk. Women who fear childbirth tend to give up control to medical providers who in turn, out of fear of malpractice suits, give up control to a risk-evaluated playbook. Mothers who desire continuous care under the obstetric model may be more likely to schedule a cesarean as a way of ensuring continuous care and as a means of
avoiding the probability of having such an intimate event attended by an unknown medical provider.

To turn the trend, a greater focus on reproductive education, medical malpractice training, and pregnancy support is needed. It is time to improve the system of reproductive education by ensuring that all citizens have access to information that is medically accurate, encourages open and honest community communication, and minimizes distorted and missing information often associated with abstinence education.

Low-risk women should be encouraged to participate in a pregnancy health programs that follow the midwifery model of care. Educating the mother about the birth process, with the goal of reducing fear and encouraging the mother to take an active role in her pregnancy and labor, can reduce the number of unnecessary cesarean deliveries.

In today’s medical landscape, medical practitioners need improved training on how to work through a malpractice lawsuit so that the experience of a suit does not cause undue fear on the practitioner. Improved societal, maternal, and practitioner may improve the system, allowing expectant mothers to achieve the higher rate of vaginal deliveries that they desire.

Dedicating resources toward reproductive education may have an impact on lowering rates of cesarean section deliveries. It is apparent from these results that encouraging an environment of open communication regarding reproductive health and childbirth, through public education and continuous supportive pregnancy care, has implications for reducing unnecessary costly delivery outcomes.
References

